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Determinant formula for the six-vertex model 

A G Izergint, D A Cokert and V E Korepins 
t St Petenburg Branch of the Mathematical Institute of the Russian Academy of Sciences 
(MMI), St Petenburg, Russia 
t lnsitute for Theoretical Physics, State University of New York at Stony B m k ,  Stony 
Brook, NY 11794-3840. USA 

Received 31 October 1991, in final form 21 April 1992 

AbsImcL l h e  partition function of a six-vertex model with domain wall boundary 
mnditions is mnsidered on the finite lattice. We show that the panilion function 
satisfies a recursion relalion. We solve the recursion relation by a determinant formula. 
l h i s  gives a determinant representation for the partition function. We use lhe Quantum 
Inverse Scattering Method ( 0 1 s ~ ) .  

1. Introduction 

Si-vertex (ice-type) models were first solved explicitly in the thermodynamic Limit 
(15-181. The model was solved in the sense of finding an explicit expression for 
the partition function in the large lattice limit. This analysis also relied on periodic 
boundary conditions [IS]. This allowed for the analysis of several thermodynamic 
quantities. Our analyis of the six-vertex model will dispense with the requirement 
for a large lattice by analysing a different set of boundary conditions, namely domain 
wall boundary conditions. The interested reader should refer to the following articles 
for more information concerning detailed analyses of the six-vertex model in the 
thermodynamic limit [4,5,9,19,21, U]. 

In [l], the inhomogeneous version of the six-vertex model was introduced and 
solved in the thermodynamic limit. In this paper, we present a detailed analysis of the 
partition function of the inhomogeneous six-vertex model with domain wall boundaly 
conditions on the square lattice. QISM is used to formulate the partition function and 
determine its recursive properties. This recursion relation was first derived for the 
model on the square lattice in [13]. ?he recursion relation for the partition function 
k solved by a determinant formula. In [2], this recursion relation was presented 
for a more general situation. In [8], Izergin made a short communication of the 
determinant formula for the partition function of the six-vertex model on the square 
lattice. 

Baxter has recently formulated a partition function for the 2 invariant six-vertex 
model in a finite size box with specific boundary conditions: namely, half the spins 
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wall boundary conditions. It is our hope that an explicit formulation of the partition 
function for domain wall boundary conditions presented in this paper will help solve 
the more general case put forward by Baxter. 

Domain wall boundary conditions appear naturally in the study of correlation 
functions. The determinant representation of this paper allows one to write down the 
determinant representation for quantum-correlation functions. This can then be used 
to obtain differential equations which can then be solved to give explicit expressions 
f-. n....-t..- r ~ r r ~ 1 n t : n n  f.."r+:.\nr IF. 7 1"l Illn "10,. I.-..- .I.... tL:" fn..."..ln -_ L.. 
1". ~ " a , r r " , r , - r " . r r r ~ r . " r l  ,"IIL.LI"II> L", I ,  1.q. 7.- L1W" ""pc "lo, U l l D  L"IIllYlll  La,, "C 

used in knot theory since statistical physics of exactly solvable models is closely related 
to knot theory and the Braid group, [22] and references therein. PLF an example, the 
well known polynomial of Jones [lo] can be considered as a partition function of 
some statistical system Ill, 121. 

This paper is organized as follows. In section 2, the six-vertex model is reviewed. 

define the partition function. In section 4, we prove the recursion relations for the 
partition function and we also prove that they define the partition function in a unique 
way. The determinant formula for the partition function is presented in section 5. 
In section 6, we present, in addition, the partition function for the six-vertex model 
for the special case with rational statistical weights. 'ho-dimensional models of 
classical-statistical physics (which we are considering) have one-dimensional quantum 
counterparts. These are the Heisenberg magnets. The six-vertex model generates the 
X X Z  Heisenberg magnet. A special case with rational statistical weights (which was 
just mentioned) generates the X X X  Heisenberg magnet. Details concerning these 
Heisenberg magnets are contained in the appendix. Finally, in section 7, we analyse 
the homogeneous limit of the partition function from section 5. In section 8, the 
results are summarized. In the appendix, we review the QISM in the context of the 
X X X  and X X Z  Heisenberg models. 

A C hergin el a1 

!I! seain!! 3, F e  trans!ax the six-vertex made! htn &e !.!?gt!.ge of &e O!SM 2nd 

2. Six-vertex model 

In this section, we will briefly review the six-vertex model as a model of interacting 
spins in iwo dimensions. Tne inhomogeneous version was formuiaied by Eaxter iij. 
In this paper, we solve the model on a finite (N x N) lattice with domain wall 
boundary conditions. XI accomplish this, we will make a translation of the model 
from the language of statistical physics [3] to the language of QISM in the next section. 

The partition function is defined by the following: 

where E is the energy of the system and the summation h Over all possible configua- 
tions of the system. The model has six possible vertex configurations represented by 
arrows going into or out of a vertex, see figure 1. The domain wall boundary condi- 
tions then correspond to the arrows pointing inward on the top and bottom of the 
lattice and the arrows pointing outward on the left and right of the lattice, figure 2(u). 
Ib compute the partition function, the vertices must be assigned statistical weights. 
Following [3], we will make the following restriction on these weights 

a z w , = w ,  b E w g = w 4  c = w S = w b  (2.2) 
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which makes the model invariant under a simultaneous reversal of all arrows. Hence, 
the partition function can be rewritten as 

where the summation is over all possible vertex configurations with ni k i n g  the 
number of vertices of type i. + +  a 

+ +  b 

+ +  
Fig" 1. Vena configurations and their associated weights. 

(4 (b) 

Figure 2 Domain wall boundary conditions: (a) statislical model and (6) OISM formula- 
tion. 

In the inhomogeneous model, the statistical weights become site dependent. ?b 
make this explicit, WO sets of spectral parameters will be used, { I m }  and { u k } ,  see 
figure 3. These sets of spectral parameters are in one to one correspondence to 
the set of !ines; 1; corresponds to the first horizontal line, l2 mrrespondr to the 
second horizontal line, Ip  corresponds to the Pth horizontal line, etc. Similarly ut 
corresponds to the first vertical line, v2 corresponds to the second vertical line, U, 
corresponds to the Ith vertical line, etc. The horizontal rows will be enumerated by 
Greek indices, (a = 1, .  . . , N )  with parameters {Im}. The vertical columns will be 
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enumerated by Latin indices, (k = 1,. . . , N) with parameters {+}. Each statistical 
weight is associated with a site of the lattice and each site is associated with the 
intersection of two lines. Consequently, the statistical weight will depend on the two 
spectral parameters (l,, u k )  of these lines. It should be emphasized that the spectral 
parameters do not obey any constraint, i.e. no Bethe equations. 

A G Izergin el ai 

" " " V  
4 3 1 1  

Figure 3. Relation of spectral parameters lo latlice. 

A convenient parameterization of the weights at each vertex is 

a( l , ,uk) = s i n h ( l , - u k + ~ )  
b ( l , , u k ) = ' s i n h ( l , - u l , - i L )  
c(Zo,uk)  = -s inh(2p) .  

The partition function, Z, is now a function of 2 N  variables { l - }  and 

3. Construction of the partition function with QISM 

The QlSM formulation of the inhomogeneous six-vertex model involves the use of an 
1-operator whose matrix elements are the statistical weights (2.4). This L-operator is 
site dependent and has the following form 

where T and s are the spin variabies. Here a is the number of the borizontai iine 
and k is the number of the vertical line. T~ and s,, correspond to spins on the 
horizontal edge a, T~ and s k  correspond to spins on the vertical edge I C ,  figure 5. In 
this language, we no longer consider arrows as going into or out of a vertex. We must 
now consider spins on an edge as pointing up or down. More explicitly, for horizontal 
lines, a left arrow corresponds to an up spin while a right arrow corresponds to a 
down spin. For vertical lines, an up arrow corresponds to an up spin and a down 
arrow corresponds to a down spin, see figure 4. Hence we can think of the 1-operator 
(3.1) as the statistical weight when the spins on the surrounding edges are specified, 
see figures 5 and 6. The laperator (3.1) is the set of statistical weights associated 
with the site of the lattice at the intersection of the a t h  and kth lines. 
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The L-operator (3.1) obeys the intertwining relation in the vertical spin and hori- 
zontal spin spaces separately 

where the matrix k is defined in the appendix, see (A4), and is related to the R- 
matrix (A12) vi3 k = PR where P is the permutation matrix (A5). The R-matrix 
satisfies the Yang-Baxter relation and acts non-trivially in the tensor product space 
of two linear spaces. Subindices of the R-matrix are the numbers of these spaces. 
The monodromy matrix, product of L-operators through a h e  of the lattice, obeys 
a similar intertwining relation with R (see (3.9) and (A10)). It should be noted that 
there is a monodromy matrix associated with each vertical column and each horizontal 
TOW. 

/\rrawg 

Figure 4 ?iar n 

4 
t 

een m w s  in the 
in the OISM formulation, 

'a 

iti 

s 
k 

v e  mulation spins 

Figure 5. L-operator associated with each vertex. 
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a 

Qlgurc 6 Venex mnfiguralions in the (11% formulation. 

In what follows, we will make the following change of variables: ill = p. The 
L-operator can then be written explicitly in a more convenient form 

L Q k ( l Q  -I+) = cosqsinh(l ,  - uk) - is inqcosh(l ,  -uk)u:uz k 

- isin 217(mzu: + u~u!) (3.4) 

which is again the statistical weight at the vertex of the kth column and the ath row. 
Likewise, I, is the spectral parameter associated with the horizontal line a and uk is 
the spectral parameter associated with the vertical line I C .  The upper index of the U 
matrices indicates the space in which the L-operator acts non-trivially. 

This L-operator (3.4) has two eigenvectors ( T a T h )  and ( l , l k )  where T, corre- 
sponds to an up spin in the a t h  (horizontal) space and T k  corresponds to an up spin 
in the kth (vertical) space. The eigenvalues are 

L m k ( l a  - J ’ k ) ( T o f ~ )  = s i n h ( L  - v k -  iq)(Tofk) 
(3.5) 

L , & ( l a  - u k ) ( l m l k )  = sinh(l, - vk - i s ) ( l , l d .  

:ii Gii i  tieaiirreiii 0: this spi i i  qsm, %e aie Giisaeiiiig CGiKihi *A: 5oi;nCaq 
conditions. In this case, the N x N lattice remains finite in extent and the spins on 
the upper and right-hand sides of the lattice p i n t  down while the spins on the lower 
and left-hand sides of the lattice point up, figure 2(b). This leads to the following 
expression for the partition function in terms of the L-Operator 

spins vertices 
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Here the double product shall be taken as space ordered 
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N N  n n Lob = ( L N N  ’ .  . L N ~ L N I ) .  . ( L z N  ’ .  , L z z L z i )  ( L ~ N  ’ . L i ~ L i i ) .  (3.7) 
,=I k l  

In order to further understand the stucture of the partition function, we should 
examine the monodromy matrix, product of L-operators, along each horizontal and 
vertical l i e .  Along the orth horizontal line, the monodromy matrix T,(l,) is given 
bY 

It is important to note that this matrix obeys the intertwining relation 

The monodromy matrix along the j th  vertical line T ; ( v ~ )  is given by 

(3.10) 

which also satisfies a relation similar to (3.9) 

~ b , ( U , , V b ) T b ( V b ) T , ( U , )  = T,(U,)Tk(Vb)iib,(V,,Vk). (3.11) 

The matrix elements A, B, C and D are operators, see appendix. Hence the partition 
function (3.6) can be rewritten as 

or 

(3.12) 

(3.13) 

Thus we have obtained an expression for the partition function of the six-vertex 
model m terms of QISM. These formulae will be used in the next section to determine 
a set of lemmas which will uniquely determine the explicit expression for 2,. More 
information on the operator elements of the monodromy matrix can be found in the 
appendix. 
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4. Recursion relation fnr Z, 

In this section, we present 4 lemmas that the partition function (3.6) satisfies. These 
were first established hy V E Korepin [13]. It should be emphasized that these 
properties uniquely determine the partition function. 

Lemma. 

Roof. This follows directly from (3.6) by setting N = 1. 

Lemma. @) 2, is a symmetric function of 1, ((I = 1 , .  . . , N) and uj (j = 
1, . . . , N) separately. 

Roof. The symmetry of 2, can he seen from (3.12) and (3.13) since inter- 
changing I P  - 1, corresponds to the interchange of B( lp)  * B(1,). However, 
[ B ( l p ) ,  B( l , ) ]  = 0, following from (3.9), leaving the partition function unchanged. 
The same holds for U, ++ ui since [ C ( u j ) , C ( u k ) j  = 0 which follows from (3.11). 

Lemma. (c) 2, is a function in each variable 1, and vj of the form 

A G Izergin el a1 

(a) 2, = -i sin 27~. 

2 N - 7  - [-(N-1)'.IPN-l(exp(21,)) = ~[ (N-1)v j1QN-1(exp( -2~; ) )  (4.1) 

where PN-, and QN-I  are polynomials of degree N - 1 in their respective argu- 
ments. 

Roof. This lemma can he shown by computing 

which leads to 

Thus (c) is fulfilled since the dependence of 2, on 1, enters only by means of 
B(1*). A similar result holds for each uj.  

Lemma. (d) 2, obeys the following recursion relation 
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Roof. 'tb verify this, it is sufficient to set (3 = I = 1 using (3). Noting that L , ,  is 
furthest to the right in (3.6), we can determine 

The vector remaining on the right-hand side of (4.3) is an eigenvector of each L l k (  1, - 
uk) ( I C  = 2 , .  . . , N) with eigenvalue sinh(1, - uk - io)  and an'eigenvector of each 
Lm1( l ,  - U,) (a = 2 , .  . . , N )  with eigenvalue sinh(1, - v1 - io), see (3.5). Thus 
we are led to the following result 

The product of sinh(I, - U, - iq)  appears because we applied the product of all L,, 
f" (3.6). This proves (d). 

It is now important to state that the 4 lemmas given above determine 2, uniquely. 
This can be shown by induction starting with the result for 2,. Since 2, as a function 
of exp(21 , )  is a polynomial of degree. ( N  - l ) ,  there must be N equations to fix 
the N coefficients. The recursion relation (4.2) gives the value of this polynomial at 
N points 

1, = u1 - i o  lo  = v2 - i o  . . . /  p -  - U  N - ~ V  

providing the necessaly equations. In the next section, these properties will be used 
to verify that the partition function Z ,  (3.6) can be written as a determinant. 

5. Determinant formula for Z, 

The following formula for the partition function solves the recursion relation pre- 
sented in the previous section 

N N  

n sinh(1, - I p )  n s inh(u l -uk)  d e t M  (5.1) 
I S n < P < N  l < k < l < N  1 - I  

where 

i sin 2 7  
sinh(I, - u k - i i ~ ) s i n h ( l , - u k f i ~ ) '  Mnk = 
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Proving (5.1) to be the correct expression of the partition function is equivalent to 
showing that 2, satisfies the four lemmas from section 4. 

(a) This statement can be shown easily by setting N = 1 in (5.1). The double 
product in the numerator and the determinant each contribute only a single term 
while the denominator contributes no terms. Thus, 2, = -i sin 2q. 

(b) The symmetry Of Z, in { l , }  is easily seen by exchanging I ,  ++ lg in (5.1). 
This leads to a factor of -1 from the term 

A G Ize@ et a1 

n sinh(1, - l g )  
I<w<R<N 

in the denominator. However, this exchange of Is is equivalent to interchanging two 
rows in M which also gives rise to a factor of -1 in det M. Thus, Z ,  is unaltered 
by exchanging two 1s. A similar argument holds for exchanging two us. Hence, Z ,  
is a symmetric function in both { l e ]  and {uj} separately. 

(c) Proving this for (5.1) is equivalent to showing that the quantity 

zk E ql(N-1)~4 ZN (5.3) 

is a polynomial of degree ( N - 1 )  in exp(21,). It is sufficient to prove this for a = 1 
due to (b). This proof requires two parts. First show that Zk is a polynomial rather 
than a rational function and then show that it is of degree ( N  - 1) in exp(21,). 

To prove (5.3) is a polynomial rather than a rational function, we should demon- 
strate that Zk has zero residue at its poles. An analysis of (5.1) and (5.3) shows that 
there are two sources of poles. The first source is in M where the poles are zeros of 

sinh(1, - uk + iq) sinh(1, - uk - iq). 

However the poles of M are also zeros of the numerator of the first factor in 
(5.1) which implies they have zero residue. The second source of poles is in the 
denominator of (5.1) when a term in 

n sinh(1, - I R )  
Iba<B<N 

is zero. This can be rewritten as the statement that two spectral parameters are 
related by 

1, - l R  = inrr (n = 0 , l ) .  (5.4) 

In this case, the matrix M will have two equal rows and det M = 0. Thus, the zeros 
in the denominator are cancelled by zeros in det M .  Hence, (5.3) is a polynomial 
rather than a rational function in exp(21). 

'Ib find the degree of (5.3), it is sufficient to use CY = 1 as stated above. The 
double product in the numerator is of order exp(2N11) while the denominator is Of 
order exp( (N-  l)ll). In M, exp(1,) only occurs in the first row which gives a total 
contribution of exp(-21,). The additional factor of exp((N - 1)1,) in (5.3) leads 
to a final result of exp(2(N - 1)lJ which shows that Zl, is of degree ( N  - 1) in 
exp(21,). A similar argument holds for ul. Hence, Z ,  is an expression of the form 
(4.1) when all other spectral parameters are taken to be hed.  
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(d) ’RI show that (5.1) satisfies the recursion relation (4.2), we will use the symmetry 
property of Z,, set p = 1 = 1 and prove the following 

x [A 11 sinn(i,, . 1 , s  - v,  - i q )  1 Z, , ~ { I , ~ , ] , { v j ~ , ) ) .  (5.5) 
L 2  I -  

The first task at hand is to separate from (5.1) the factors containing 1, and U,. 
This results in a factorized form for Z ,  

Z,.,({lm},{uj))= ( - l )Ns inh ( l l -u l  - iq )s inh( l ,  -U, + i q )  
N 

n s i n h ( l , - u ,  + i q ) s i n h ( l e - u 1 - i q )  
0 = 2  

N 

sinh(1, - l a )  
p=2 

N 
sinh(1, - uk + iq) sinh(l, - vk - i o )  

n s i n h ( u l  - U,) 
1=2 

N N  n ~ s i n h ( l , - u k + i q ) s i n h ( l , - u k - i q )  

n sinh(l, - l a )  n sinh(ul - u t )  
detM. (5.6) n=2 k = 2  

X 

2 9 o < P < N  Z < k < l < N  

iiie ~iiii-iijiiikiii kii i  1, iiiid i/, bi i i i  k~kiteb e<e~+heie e x ~ p :  i~ M .  ‘k 
accomplish this, we need to understand how det M behaves in the limit 1, - v,  - iq. 
Examining (5.2), it is easy to verify that in this limit M,, has a pole which dominates 
the determinant leading to the following hctorization, accurate to U(1) 

where M N - *  is the N - 1 x N - 1 minor of M which is independent of 1 ,  and 
U,. The pole in (5.7) is cancelled by a zero in the numerator of (5.6) which leads to 
(5.5) upon setting I ,  = v ,  - iq to cancel the additional factors in the second line. 

We see that formula (5.1) satisfies all lemmas of section 4. Thus, (5.1) is the 
MTIPC! expresrb!! for the partition function of the six-vertex mode! with domain wa!! 
boundary conditions. Since the spectral parameters are arbitrary, this determinant 
formula is the explicit result for Z, and can be evaluated for any set of { l m ,  uk). A 
similar determinant formula was found for the spin-spin-correlation function of the 
Ising model which describes the interaction of free fermions 1201. 
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6. Rational six-vertex model 

The rational six-vertex model corresponds to the special case when the statistical 
weights (2.4) are parametrized by rational functions of the spectral parameters. The 
statistical weights are then given by 

A C bergin et a1 

a X X X  ( l o r u b )  = 1, - uk + i i c  

(6.1) 
b X X X ( l o r u k )  = 1, - uk - p c  1' 

cxxx ( l a r u k )  = -ic 

where c is an arbitrary constant. In this case, the L-operator is constructed straight- 
forwardly as above, see (3.1) 

L z t x ( l ,  - u k )  = 1, - uk - iicu:u: - i c ( o ? o t  + uTob) .  (6.2) 
The following expression is the solution for the partition function with domain 

wall boundary conditions in the rational model 

G x x ( { L h { v j l )  
N N  n n ( v j  - 1, - i ic)(uj  - 1, + i i c j  

det MXXX (6.3) 
N j=10=l  = (-1) n ( U k - v j )  n 

l < k < j < N  16P <a< N 

where 
M X X X  = i C  

(u j  - 1, - 4icj(uj - 1, + i i c )  ' 

Tnis formuia can be proven using the same methods as above witn iemmas (aj, (cj 
and (d) replaced by the following lemmas. 

Lemma. (axxx)  Z:xx = -ic 

Lemma. 
uj separately. 

Lemma. 

(cxxx)  Zxxx is a polynomial of degree N - 1 in each variable 1, and 

(dxx x ,  The partition function obeys the following recursion formula: 

N 

(6.5) x x x  
x n ( U j - 1 ,  - f ic )ZN-I  ({1,#pl,{vkf,)j. 

W # O  

Lemma (b) remains unaltered. 

following substitutions 
It should also be noted that (6.3) can be obtained from (5.1) by making the 

27 - ec 1 - El as c - 0 .  (6.6) 

This then leads to an extra factor of e N 1  in the partition function. This is easily 
understood since the above substitutions would change each statistical weight in (2.4) 
by a factor of c. 
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7. Homogeneous lattice 

The above results concentrated on the inhomogeneous lattice whereby with each ver- 
tex corresponded a different set of statistical weights, see (3.1) and (3.4), parametrized 
by { l m )  and {u~}. In this section, we shall consider the special case of the homoge- 
neous lattice where the statistical weight for each vertex is parametrized by the same 
number. More explicitly, we shall consider 

1, - 1 u k + u  (a,k= 1, ..., A’). 

Each vertex will then be parametrized by the difference z = 1 - U. 
’Ib derive the partition function for the homogeneous lattice, we will start with 

the partition function (5.1) for the inhomogeneous lattice. To make the steps of the 
proaf mere erp!icit, the partitie!? hJ!?Cti!?!? (5.1) i5 rewritte!? 2s 

x det 

where 

@ ( 1 -  U) = [ s inh(1-  U + i q ) s inh ( l -  u- iq)]-’ .  ( 7 4  

In this form, it is evident that elements in the same row depend on the same value 
of Ip and elements in the same column depend on the same value of U,. 

First we will only be concerned with evaluating the limit 

1 * - 1  (cY=l,  ..., N )  (7.3) 

and leave the set {vk} arbitraly but each uk unique. The functions 4(1, - v k )  can 
then be l y l o r  expanded about 1 when 1, - 1. The formula IR = 1 + (1 ;  - 1 )  will 
prove useful where Io - 1 is of infinitesimal order in the limit (7.3). It should be 
noted that in the limit (7.3), singularities will arise in the denominator of (7.1) as will 
be explained later. 

For convenience, we set 1, = 1 .  First take the limit 1, - 1 and use I ,  = I + ( l , - l )  
to perform a Bylor series expansion. Thus elements in the second row of the matrix 
in (7.1) are of the form 

4 ( 1 * - U j ) = 4 ( 1 - U j ) + ( 1 * - 1 ) 4 ’ ( 1 - U j ) +  

where the prime denotes differentiation with respect to the argument of d. The first 
term can then be removed from the matrix by subtraction of the first row. Elementary 
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row operations such as this do not change the value of the determinant. The second 
row now has elements of the form 

A G Izergin el a1 

( 1 , - 1 ) + ' ( I - V j ) +  ; (1 , - I y+ " ( I -u j )+  

where 1, - 1 can now be factored out of the determinant. In the denominator of 
(7.1), the function sinh(l, - 1 )  induces a singularity in the limit I, - 1. However, 
this singularity is cancelled by the zero from the term ( 1 2  - I )  factored out above. 
The next order term disappears in the limit I, - I. Therefore the first two rows of 
the matrix in (7.1) now read 

+'(1-u,) " '  + ' ( l L V k )  " '  (7.4) 
' . '  4 ( i - u N ) l .  l + ( [ - u l )  " '  + ( l -  V k )  

Next, the limit I, -t I is taken. Thus the elements in the third row of (7.1) are 
expanded as 

+ ( l 3 - U ~ ) = + ( I - u j ) + ( I 3 - 1 ) + ' ( I - u j ) +  ( l 3  - q v ( I  - U j )  + . . . . (7.5) 2! 

The first term in this expansion is removed by subtracting the first row from the third 
IOW, The second. term is removed by multiplying the second row by ( l 3  - I )  and 
subtracting. Thus, the third row is left with terms of the form 

x d e t  

+(l-vl) ( . .  + ( l - v h )  _ ' '  

@ ( l - u l )  , . .  + ' ( I - q )  " '  # ( [ - U N )  

+ " ( 1 - q )  , . .  + " ( [ - U k )  , ' .  + " ( l - - V N )  

$(!.#-U1) ' ' _  + ( l 4 - U k )  " '  $ ( L 4 - - U N )  

+ ( 1 , v - ~ I )  ' . .  + ( L N - u k )  ." + ( ~ N - v N )  
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when 1, -* 1. The first term is removed by subtraction with the first row of (7.6). The 
second term is removed by multiplying the second row by ( 1, - 1 )  and subtracting. 
All the terms up to O ( ( l P  - 1 ) , - ' )  are removed in a similar fashion using elementary 
row operations. Thus the only terms left in the 0th row are of the form 

Again the term (l,-l)P-l/(O-l)! is factored out. A term of the form sinhP-'(lP- 
1 )  appears in the denominator. This term is singular and of the Same order as the 
term factored out. In the limit IP - 1, a factor of 1 /(O- l)! remains. The additional 
term in (7.8) of U( ( 1, - 1 ) O )  is still O( I s  - 1 )  and goes to zero giving no mntribution 
in the limit 1, -t 1. 

This procedure is then carried out for each 1, whereby the 0th row aquires oi - 1 
derivatives and a factor of l / ( a  - l)!. The following form for the partition function 
is thus obtained in the limit (7.3), all 1s are the same, but the set t u k )  remains as 
above 

N 
~ s i n h N ( 1 - v v , - i q ) s i n h N ( 1 - u k + i 9 )  

Yfi' CY!] sinh(vk - uI) 

N k = l  2, = (-i sin 29) 

n=l  I < k < l g N  

x det 

This formula represents the partition function when the horizontal space is homoge- 
neous hut the vertical space is not. 

Next the limit 

v k i u  ( k = l ,  ..., N )  (7.10) 

is considered. The formula uk = v - (Y - U,.) is used to Timylor expand an arbitraly 
element 

+ q 1 -  VI.) = C p ( 1 -  v )  + (U - Yk)+( ,+1) (1  - v )  

As above, the limits (7.10) are evaluated in order of increasing k with ele- 
mentary column operations used instead. The zeros in the denominator of the 
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form sinh"-'(u - uk) are removed by the factors (U - uk)k-'/(k - l)! leav- 
ing an ovelall factor of l / ( k  - l)! for the kth column. Thus the first col- 
umn aquires no extra derivatives, the second column aquires one extra derivative 
and the kth column aquires k - 1 additional derivatives. In addition, the factor nf=l sinhN(I - uk - iq)sinhN(I - uk + iq) from (7.9) becomes +-N2(z )  where 
z = I - U. Combining these results, the partition function in the homogeneous limit 
is given by 
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( - i s i n ~ q ) ,  
z, = 2 

+"(I)  Yjl..!] 

(-i sin 2 ~ ) ~  det 71 
Z, = 

N-1 

where the matrix 71 is given by 

. (7.12) 

(7.13) 

(7.14) 

where a and k are matrix indices. This is the result for the homogeneous lattice. It 
should be noted that this procedure can be carried out for various other limits of the 
spectral parameters. For example, all the us could be the same with a subset of the 
is going to one vaiue whiie the rest of the i s  go to another vaiue. Using the above 
method, many different situations can be analysed. 

The partition function for the rational six-vertex model also has a homogeneous 
limit that is similar to (7.13). The following result is proven using the methods above 

(-ic)N det X x X x  z;xx = 
N-1 

where 

with the function e ( x )  defined by 

(7.15) 

(7.16) 

= [ I 2 + -  T I - 1  . (7.17) 
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8. Conclusion 

In this paper we showed that the partition function for the six-vertex model on a 
finite square lattice can be explicitly evaluated in the case of domain wall boundary 
conditions. The partition function was proved to be equal to the determinant of 
some matrix. The size of this matrix is equal to the size of the lattice. In general, 
the partition function of the six-vertex model was expressed in terms of trigonometric 
functions. The determinant representation changed essentially for the homogeneous 
case. In the case of the rational six-vertex model, the matrix elements are rational 
functions of the spectral parameters. Evaluation of the thermodynamic limit of the 
inhomogeneous model is not straightfonvard and remains an open problem. How- 
ever, we expect the free energy of the six-vertex model with domain wall boundary 
conditions to differ from that with periodic boundary conditions since the model is 
critical and surface effects should influence macroscopic quantities. 
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Appendix. Basics of QISM 

In this appendix, we briefly review the QISM formulation of the X X Z  Heisenberg 
antiferromagnet. The six-vertex model has the Same algebraic stucture as the inho- 
mogeneous Heisenberg anti-ferromagnet, X X Z  model. Therefore we will review the 
important properties of QISM [14] in the context of the X X Z  model. 

The X X Z  Hamiltonian is given by 

n=1 

where h is the external magnetic field and UA are standard Pauli matrices at the nth 
site of the lattice. There are a total of A4 sites. A is the anisotropy parameter. 
A = 1 for the X X X  model and A = cos2rj for the X X Z  model. We impose 
periodic boundary conditions such that U, = uMtl.  This system has been solved 
by means of both the coordinate and algebraic Bethe ansatz. The algebraic solution 
comes from the QISM formulation of the model. 

The transition matrix T ( n ,  rnll) from site m to site a + 1 is the product of 
L-operators 

T(n,mll) = L,,(L)L,,-i(L) . . . L j ( l )  ".L,,,+i(1)Lr,,(l) (W 
where 1 is the spectral parameter, rapidity. These L-operators obey the following 
intertwining relation with the R-matrix (A12) 

W ~ P )  [L,,(U @ L ( P ) I  = [L,(P) @ L n ( O 1  W ~ P ) .  (W 
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Thus we see that the R-matrix acts in the tensor product space of the two L-operators. 
This can be made more explicit by rewriting (A3) as 
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k f l ( 1 , d L , n ( 4 f l n ( P )  = L O n ( P ) L ( 0 k @ ( b )  (-44) 

where subindices enumerate the spaces where the matrices act non-trivially. The 
matrix k is defined by 6 = PR where P is the permutation matrix which interchanges 
two spaces and is given explicitly by 

Here L,, is a 2 x 2 matrix which acts in the two-dimensional space a and Lo, acts 
in the space 0, n is still the lattice site. The transition matrix also obeys a similar 
relationship with the R-matrix. 

The mansition matrix through the entire lattice is called the monodromy matrix 
T(1) 

where A,B,  C and D are operators which act on a pseudovacuum, IO), in the 
following way: 

A(1)10) = a(1)lO) 

D(1)IO) = d ( l ) [ O )  

c(l)lO) = 0 

(OIE(1) = 0. 
(A') 

The pseudovacuum for the above Hamiltonian (Al), IO), is the state with all spins 
up, I 1 ). The vacuum eigenvalues R( 1 )  and d( 1 )  are c-valued functions of the spectral 
parameter. Their explicit form depends on the model in question. The X X X  model 
has vacuum eigenvalues 

(AS) 
M 

a(l) = ( 1  - iic) 

~ ( l )  = sinhM(l  - i q )  

ct(l) = ( 1  + i i c )  

and the X X Z  model has vacuum eigenvalues 

d ( l )  = s inhM(l  + i l l ) .  (W 
Here c and q are coupling constants. E( / )  and C(1) can be considered as cre- 
ation and annihilation operators on the vacuum. Hence, the eigenfunction of the 
Hamiltonian (Al) for N spins down ( N  < M) is of the form 
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where T,(1) acts on the two-dimensional space Q and To(p) acts on the space 0. 
From (A10) it follows that ( [ B ( l ) , B ( p ) ]  = 0 and [ C ( l ) , C ( p ) ]  = 0). The trace of 
T( 1 )  is the transfer matrix T (  1 )  which is the generator of all conservation laws. From 
(A10) we see that the transfer matrices commute for different values of the spectral 
parameter, [ T ( ~ ) , T ( P ) ]  = 0. 

The R-matrix for the above Hamiltonian is of the following form 

where for the X X X  model 

and for the X X Z  model 

where c and q are coupling constants, c > 0 and A = cos 21). 

the X X X  model is 
The above intertwining relation for the L-operator has a solution whose result for 

L,(1) = 1 - - 
ic 2 ( 2 0 ;  -0: ""'> 

while the result for the X X Z  model B 
sinh(1- iqo:) -U! sin(2q) 

-U; sin(2q) sinh(l + iqu:) 
L"(1) = 

These solutions can be generalized to the inhomogeneous case whereby the spec- 
tral parameter is shifted by a number U,, which depends on the site of the lattice. 
n.e m.adramy m2Kk fie!! t . k S  the fo!!ouring farm 

T ( ~ ) = L M ( I - u M ) . . . L ~ ( ~ - u ~ )  ('417) 
and still satisfies the intertwining relation (A10) above. In this case, the vacuum 
eigenvalues (A7) for the inhomogeneous X X X  model become 

M M 

a ( l ) = n ( l - u j - i i c )  d ( l ) = n ( l - u j + i i c )  (AW 
j = 1  j = l  

and the vacuum eigenvalues (AS) for the inhomogeneous X X Z  model become 
A4 

a ( l ) =  n s i n h ( l - u j - i q )  . .  I='  

M 
d ( l ) = n s i n h ( l - u j + i q ) .  

j = 1  

('419) 
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The inhomogeneous form of (A15) was used in the construction of the partition 
function of the six-vertex model. 

A G Izetgin et a1 
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