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Determinant formula for the six-vertex model

A G Izergint, D A Cokerj and V E Korepin§

t St Petersburg Branch of the Mathematical Institute of the Russian Academy of Sciences
(LOMI), St Petersburg, Russia

1 Insitute for Theoretical Physics, State University of New York at Stony Brook, Stony
Brook, NY 11794-3840, USA

Received 31 October 1991, in final form 21 Aprit 1992

Abstract. The partition function of a six-vertex model with domain wall boundary
conditions is considered on the fnite lattice. We show that the partition function
satisfies a recursion relation. We solve the recursion relation by a determipant formula.
This gives a determinant representation for the partition function. We use the Quantum
Inverse Scattering Method (QISM.

1. Introduction

Six-vertex (ice-type) models were first solved explicitly in the thermodynamic limit
[15-18). The model was solved in the sense of finding an explicit expression for
the partition function in the large lattice limit. This analysis also relied on periodic
boundary conditions [15]. This allowed for the analysis of several thermodynamic
quantities. Our analyis of the six-vertex model will dispense with the requirement
for a large lattice by analysing a different set of boundary conditions, namely domain
wall boundary conditions. The interested reader should refer to the following articles
for more information concerning detailed analyses of the six-vertex model in the
thermodynamic limit [4,5,9, 19,21, 23}.

In (1], the inhomogeneous version of the six-vertex model was introduced and
solved in the thermodynamic limit. In this paper, we present a detailed analysis of the
partition function of the inhomogeneous six-vertex model with domain wall boundary
conditions on the square lattice. QISM is used to formulate the partition function and
determine its recursive properties, This recursion relation was first derived for the
model on the square lattice in [13]. The recursion relation for the partition function
is solved by a determinant formula. In [2], this recursion relation was presented
for a more general situation. In [8], [zergin made a short communication of the
determinant formula for the partition function of the six-vertex model on the square
lattice.

Baxter has recently formulated a partition function for the Z invariant six-vertex
model in a finite size box with speciﬁc boundary conditions: namely, half the spins
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wall boundary conditions. It is our hope that an explicit formulation of the partition
function for domain wall boundary conditions presented in this paper will help solve
the more general case put forward by Baxter.

Domain wall boundary conditions appear naturally in the study of correlation
functions. The determinant representation of this paper allows one to write down the
determinant representation for quantum-correlation functions. This can then be used
to obtain differential equations which can then be solved to give explicit expressions

for quantum-w.re}ahcn functions [6,7, 14]. We also hope that this formula can be
used in knot theory since statistical physics of exactly solvable models is closely related
to knot theory and the Braid group, [22] and references therein. As an example, the
well known polynomial of Jones [10] can be considered as a partition function of
some statistical system [11, 12].

This paper is organized as follows. In section 2, the six-vertex model is reviewed.
In section 3. we translate the six-vertex model into the Ismmmm=l of the QIsSM and
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define the partition function. In section 4, we prove the recursnon relations for the
partition function and we also prove that they define the partition function in a unique
way. The determinant formula for the partition function is presented in section 5.
In section 6, we present, in addition, the partition function for the six-vertex model
“for the special case with rational statistical weights. Two-dimensional models of
classical-statistical physics (which we are considering) have one-dimensional quantum
counterparts. These are the Heisenberg magnets. The six-vertex model generates the
X X Z Heisenberg magnet. A special case with rational statistical weights (which was
just mentioned) gencrates the X X X Heisenberg magnet. Details concerning these
Heisenberg magnets are contained in the appendix. Finally, in section 7, we analyse
the homogeneous limit of the partition function from section 5. In section 8, the
results are summarized. In the appendix, we review the QISM in the context of the
XXX and X XZ Heisenberg models.

2. Six-vertex model

In this section, we will briefly review the six-vertex model as a model of interacting

spins in fwo dimensions, The inhomogeneous version was formuiated by Baxter [i].

In this paper, we solve the model on a finite (/N x N} lattice with domain wall

boundary conditions. To accomplish this, we will make a translation of the model

from the language of statistical physics [3] to the language of QIsM in the next section.
The partition function is defined by the following:

— i E] )
Z=) exp k'TJ (2.1)

where E is the energy of the system and the summation is over all possible configua-
tions of the system. The model has six possible vertex configurations represented by
arrows going into or out of a vertex, see figure 1. The domain wall boundary condi-
tions then correspond to the arrows pointing inward on the top and bottom of the
lattice and the arrows pointing outward on the left and right of the lattice, figure 2(a).
To compute the partition function, the vertices must be assigned statistical weights.
Following [3], we will make the following restriction on these weights

a=w; = w, b= wy=w, C= wy = Wy (2.2)
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which makes the model invariant under a simultaneous reversal of all arrows. Hence,
the partition function can be rewritten as

Z= Z an1+‘n; bna+11-4 cﬂ5+ns (23)

where the summation is over all possible vertex configurations with n; being the
number of vertices of type 1.

i
i
i

Figure 1. Vertex configurations and their associated weights,
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Figure 2. Domain wall boundary conditions: {(a) statistical model and (b) aism formula-
tion.

In the inhomogeneous model, the statistical weights become site dependent. To
make this explicit, two sets of spectral parameters will be used, {l,} and {v,}, see
figure 3. These sets of spectral parameters are in one to one correspondence to

second horizontal line, 15 corresponds to the Gth horizontal line, etc. Similarly v,
corresponds to the first vertical line, v, corresponds to the second vertical line, v,
corresponds to the [th vertical line, etc. The horizontal rows will be enumerated by
Greek indices, (o = 1,...,/N) with parameters {!,}. The vertical columns will be
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enumerated by Latin indices, (k = 1,..., N) with parameters {v, }. Each statistical
weight is associated with a site of the lattice and each site is associated with the
intersection of two lines. Consequently, the statistical weight will depend on the two
spectral parameters ({,,v, ) of these lines. It should be emphasized that the spectral
parameters do not obey any constraint, i€. no Bethe equations.

Figure 3. Relation of spectral parameters to lattice.
A convenient parameterization of the weights at each vertex is

a(l,,v,) =sinh{l, — v, + u)
b(Ly, v} = sinb(l, — vy — &) @8
c(l,,vy) = —sinh(2u).

The partition function, Z, is now a function of 2N variables {l,} and {v,}.

3. Construction of the partition function with QIsM

The QisM formulation of the inhomogeneous six-vertex model involves the use of an
L-operator whose matrix elements are the statistical weights (2.4). This L-operator is
site dependent and has the following form

b(la,uk) 0 0 0
ThIY — 0 a(i ’Vk) c(l 1“}:) 0
Lak(laayk)r:,;:, - 0 c(l:,uk) “(t:u”k) 0 (31)
0 0 0 b(l,,vy)

where » and s are the spin variables. Here « is the number of the horizontal iine
and k is the number of the vertical line. », and s, correspond to spins on the
horizontal edge o, ), and s, correspond to spins on the vertical edge k, figure 5. In
this Janguage, we no longer consider arrows as going into or out of a vertex. We must
now consider spins on an edge as pointing up or down. More explicitly, for horizontal
lines, a left arrow corresponds to an up spin while a right arrow corresponds to a
down spin. For vertical lines, an up arrow corresponds to an up spin and a down
arrow corresponds to a down spin, see figure 4. Hence we can think of the L-operator
(3.1) as the statistical weight when the spins on the surrounding edges are specified,
see figures 5 and 6. The L-operator (3.1) is the set of statistical weights associated
with the site of the lattice at the intersection of the «th and kth lines.
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The L-operator (3.1) obeys the intertwining relation in the vertical spin and hori-
zontal spin spaces separately

ﬁaﬁ(laalﬁ)l-gk(ta = v )bge(ls — ny)

= bgpllg — vty — vidRas(la, 1) (3.2)
and
Rer (v v ) ai (e = vidbar(lo — )

= Lo(lo — vl Ly — v Ry (v vp) (3.3)

where the matrix R is defined in the appendix, see (A4), and is related to the R-
matrix (A12) via R = PR where P is the permutation matrix (A5). The R-matrix
satisfies the Yang-Baxter relation and acts non-trivially in the tensor product space
of two linear spaces. Subindices of the R-matrix are the numbers of these spaces.
The monodromy matrix, product of L-operators through a line of the lattice, obeys
a similar intertwining relation with R (see (3.9) and (A10)). It should be noted that
there is a monodromy matrix associated with each vertical column and each horizontal
row.

Arrows Sping {CHSM)

Figure 4. Translation between arrows in the statistical six-vertex formulation and spins
in the qism formulation.

I
r S
a o
I \A\r =
(L)
S5
k ra Sa

Figure 5. L-operalor associaled with each vertex.
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Figure 6. Vertex configurations in the QisM formulation.

In what follows, we will make the following change of variables: in = u. The
L-operator can then be written explicitly in a more convenient form

L,x{lo — Vi) = cosqsinh(l, — v;) —isinncosh({, — vy )a%ak
—isin 21’;(0’5"’_0’5‘r + crf;df) (3.4)

which is again the statistical weight at the vertex of the kth column and the ath row.
Likewise, {,, is the spectral parameter associated with the horizontal line o and v, is
the spectral parameter associated with the vertical line k. The upper index of the
matrices indicates the space in which the L-operator acts non-trivially,

This L-operator (3.4) has two eigenvectors (1,7,) and (l,l,) where T, corre-
sponds to an up spin in the oth (horizontal) space and T, cotresponds to an up spin
in the kth (vertical) space. The eigenvalues are

Lar(la = )(1aTs) = sinh(l, - vy — in)(Taty)

I‘ak(la - Uk)(l—alk) = Sinh(la — V- ”7)(lcxlk)

In our treatment of this spin systeim, we are considering domain wall boundary
conditions. In this case, the N x N lattice remains finite in extent and the spins on
the upper and right-hand sides of the lattice point down while the spins on the lower
and left-hand sides of the lattice point up, figure 2(b). This leads to the following
expression for the partition function in terms of the L-operator

ZN({lor}ﬂ{Uk}) = Z H (I‘ak(la - yk)):::t

spins vertices

N N N N N N
= {II 15 11 1,-} {1‘[ IT Loilte -uk)} {H ls Hr,} )
#=1 i=1 a=1k=1 B=1

i=1

(3.5)
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Here the double product shall be taken as space ordered

N N
H H Lak = (LNN ) “LNzLNl) R ®IVER 'L22'-21) (|-1N e '-12'-11) . 3.7
a=1k=1

In order to further understand the stucture of the partition function, we should
examine the monodromy matrix, product of L-operators, along each horizontal and
vertical line. Along the ath horizontal line, the monodromy matrix T, (!,) is given
by

N
A(l,) B(l,)
T, () = Htak(za—uk)=( o) Blla)) (.8)
1 Cll,) DU,)
It is important to note that this matrix obeys the intertwining relation

Ropllar 1) Tolla)Tale) = To(ln)TallaRop(las bp)- 3.9)

The monodromy matrix along the jth vertical line ;(1;) is given by

N
A(v;) B(u-))
(v.)= L, ;{{,—v;)= i i), 3.10
TJ(VJ) aI=Il a_;( a V;) (C(UJ-) D(Uj) (3.10}
which also satisfies a relation similar 1o (3.9)

Ry (v v) T ) mi(vy) = T(up) m ()R (v ). 3.11)

The matrix elements A, B, C and D are operators, see appendix. Hence the partition
function (3.6) can be rewritten as

= {,li j} {jjl B(la)} {i{l I,,-} (3.12)

N N N N
ZN={HT.6}{ ljr,-(vj)HT,-}{ng}
A=1 i=1 i=1 B=1

(e ll)

Thus we have obtained an expression for the partition function of the six-vertex
model in terms of QISM. These formulae will be used in the next section to determine
a set of lemmas which will uniquely determine the explicit expression for Z,. More
information on the operator elements of the monodromy matrix can be found in the
appendix,
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4. Recursion relation for Zy,

In this section, we present 4 lemmas that the partition function (3.6) satisfies. These
were first established by V E Korepin [13]. It should be emphasized that these
properties uniquely determine the partition function.

Lemma. (a) Z2, = —isin21.
Proof. 'This follows directly from (3.6) by setting N = 1.

Lemma. (b) Zy is a symmetric function of {, (o = 1,...,N) and v; (j =
1,..., N) separately.

Proof. The symmetry of Z, can be seen from (3.12) and (3.13) since inter-
changing [, « [, corresponds to the interchange of B(lz) «— B(l,). However,
[B(iz), B(l,)] = 0, following from (3.9), leaving the partition function unchanged.
The same holds for v; « v, since [C(v;), C{v;)] = 0 which follows from (3.11).

Lemma. (¢) Z, i a function in each variable [, and v; of the form

Zy =gl WV-Dklpy (exp(2l,)) = n[(N‘l)”i]QN_l(exp(—2uj)) 4.1)

where P, _; and Q,_, are polynomials of degree N — 1 in their respective argu-
ments.

Proof. This lemma can be shown by computing

aN (N=-DlelT (]
Wn o(la)

which leads to

aN

sramE e Balla) = 0.

Thus (c) is fulfilled since the dependence of Z, on [, enters only by means of
B(l,). A similar result holds for each v;.

Lemma. (d) Z, obeys the following recursion relation
k#l

N
ZN({la}'{Vj})lr,-v.=-in= —isin 27 [H sinh(lg — vy - in):l

N
X [H sinh(l, — v, — in)] Zy a({lagah {vimb)- (4.2)
agf
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Proof. To verify this, it is sufficient to set @ = { = 1 using (b). Noting that L, is
furthest to the right in (3.6), we can determine

Ly (4 — vy = —in) {ji[] laﬁ T,}
RV
A

The vector remaining on the right-hand side of (4.3) is an eigenvector of each L, ({, ~
v) (k=2,...,N) with eigenvalue sinh({, ~ v, —in) and an eigenvector of each
L,.{{, — 1) (a=2,...,N) with eigenvalue sinh{l, — v, —in), see (3.5). Thus
we are led to the following result

1 (4.3)
gl

N
Zn({laYs v D _y o iy = —isin 27 [H sinh(l, — v, — in)J

k=2
"N
X H sinh({, — v, — iﬂ)] ZN—]({l(!#l}’{Vj#]})‘ (4.9)
a=2

The product of sinh (I, — v —in) appears because we applied the product of ali L,
from (3.6). This proves (d).

It is now important to state that the 4 lemmas given above determine Z,, uniquely.
This can be shown by induction starting with the result for Z,. Since Z,,; as a function
of exp(2l,) is a polynomial of degree (N — 1), there must be N equations to fix
the N coefficients. The recursion relation (4.2) gives the value of this polynomial at
N points

lg=v, —~in lg=wvy,—in solg = vy —in

providing the necessary equations. In the next section, these properties will be used
to verify that the partition function Z,, (3.6) can be written as a determinant.

5. Determinant formula for Z

The following formula for the partition function solves the recursion relation pre-
sented in the previous section

N N
Zn({ 141 = (DN [T ] sinb (i, — v —in) sinh(l, — vy + in)
a=1k=1
~1

X H sinh({, ~{5) H sinh(y) — v )| det M (5.1)
1Sa<ggN 1<E<IEN
where

isin2n
sinh({, — v, —in)sinh(l, ~ v, +in)’

Mak = (52)
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Proving (5.1) to be the correct expression of the partition function is equivalent to
showing that Z, satisfies the four Jemmas from section 4.

(a) This statement can be shown easily by setting N = 1 in (5.1). The double
product in the numerator and the determinant each contribute only a single term
while the denominator contributes no terms. Thus, Z, = —isin 2%,

~(b) The symmetry of Zy in {l,} is easily seen by exchanging I, «— I, in (5.1).
This leads to a factor of —1 from the term

II sinh(i, -1p)

1€a<fEN

in the denominator. However, this exchange of Is is equivalent to interchanging two
rows in M which also gives rise t0 a factor of -1 in det M, Thus, Z,, is unaltered
by exchanging two Is, A similar argument holds for exchanging two vs. Hence, Z
is a symmetric function in both {i,} and {v;} separately.

(c) Proving this for (5.1) is equivalent to showing that the quantity

Zyy = Nl Z, (53)

is a polynomial of degree (N —1) in exp(21,,). It is sufficient to prove this for o = 1
due to (b). This proof requires two parts. First show that Z), is a polynomial rather
than a rational function and then show that it is of degree (N — 1) in exp(2!,).

To prove (5.3) is a polynomial rather than a rational function, we should demon-
strate that Z3, has zero residue at its poles. An analysis of (5.1) and (5.3) shows that
there are two sources of poles. The first source is in M where the poles are zeros of

sinh(l, — v +in)sinh(l, — v, —in).

However the poles of M are also zeros of the numerator of the first factor in
(5.1) which implies they have zero residue. The second soutce of poles is in the
denominator of (5.1) when a term in

I sinh(ly - 15)

1a<fEN

is zero. This can be rewritten as the statement that two spectral parameters are
related by

ly —lg=inmT (n=0,1). (5.4)

In this case, the matrix A will have two equal rows and det AM = 0. Thus, the zeros
in the denominator are cancelled by zeros in det M. Hence, (5.3) is a polynomial
rather than a rational function in exp(2{).

To find the degree of (5.3), it is sufficient to use o = 1 as stated above. The
double product in the numerator is of order exp(2N{,) while the denominator is of
order exp((N —1){;). In M, exp(I;) only occurs in the first row which gives a total
contribution of exp(—2{,). The additional factor of exp((N — 1){,) in (5.3) leads
to a final result of exp(2(N ~ 1){,) which shows that Z/, is of degree (N — 1) in
exp(2!,). A similar argument holds for v,. Hence, Z; is an expression of the form
(4.1) when all other spectral parameters are taken to be fixed.
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(d) To show that (5.1) satisfies the recursion relation (4.2), we will use the symmetry
property of Z,,, set 3= 1= 1 and prove the following

N
Zy({ta}s {Vi})|h—vl=-in= —isin 279 |:H sinh(l, — v, —in)

k=2
(17 sim ool 20
x | ]] sinh{{y — —”f)J Zya{lapn b v l) (5-5)
a=2

The first task at hand is to separate from (5.1) the factors containing !, and 2.
This results in a factorized form for Z,

Zn({1,},4v;}) = (=1)V sinh(l — v, — in) sinh (i, - v, +in)

N
I1 sinh(l, = v, +im) sinh(l, — v, —in)

=2
x N
[1 sinh(?; —£5)
A=2
N
1 sinh(l, — vy +in)sinh(l; — v ~ in)
x k=2
N
Hsinh(u, -y}
=2
N N
H H sinh(l, — v, +in)sinh({, — v, —in)
x S=tk=2 det M. 5.6
sinh(l, —1g) [ sinh(y,—vy) ©-6)
2€a<fEN 2€k<IN

h Ry axdden Ferewn hansm sonlatad as srhara avcant ri .\A

Here the contribution from L1 and 4 has been isolated EVEIywineic CXeept M. To
accomplish this, we need to understand how det M behaves in the limit I} — v, —in.
Examining (5.2), it is easy to verify that in this limit M, bhas a pole which dominates
the determinant leading to the following factorization, accurate to O(1)

-1
sinh(ll — + ”?) I —vy=—iy

det M = det My,_, 5.7

where Mp,_; is the N —1 x N — 1 minor of M which is independent of {; and
v,. The pole in (5.7) is cancelled by a zero in the numerator of (5.6) which leads to
(5.5) upon setting !, = v, —in to cancel the additional factors in the second line.

We see that formula (5.1) satisfies all lemmas of section 4. Thus, (5.1} is the
correct expression for the partition function of the six-vertex model with domain wall
boundary conditions. Since the spectral parameters are arbitrary, this determinant
formula is the explicit result for Z, and can be evaluated for any set of {{,,2,}. A
similar determinant formula was found for the spin-spin-correlation function of the
Ising mode] which describes the interaction of free fermions [20].
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6. Rational six-vertex model

The rational six-vertex model corresponds to the special case when the statistical
weights (2.4) are parametrized by rational functions of the spectral parameters. The
statistical weights are then given by

aX XX (1, v) =1y — v + Lic
VXXX (1, vp) = 1y — vy — Tie (6.1)
XXX v ) = —ie

where ¢ is an arbitrary constant. In this case, the L-operator is constructed straight-
forwardly as above, see (3.1)

XXX(E k

~ ) =Ly — vy — Sico¥ol —ie(o%ck 4 0f0k).  (62)

The following expression is the solution for the partition function with doimain
wall boundary conditions in the rational model

ZRF X {l b AvD)

=(-1)V det MXXX (6.3)

(Vk—Uj) H (la_[ﬁ)

1€ <oV

N N

_H T1 = §i)0; = L+ fie)
H
k<

where

MXXX = ic . 6.
(v =l — %ic)(vj -, + -12-ic) 6.4

This formula can be proven using the same methods as above with lemmas (a), (c)
and (d) replaced by the following lemmas.

Lemma. (@%XXX) ZXXX = —j¢

Lemma. (cXXXy ZXXX is a polynomial of degree N — 1 in each variable {, and
v; separately.

Lemma. (d*XX) The partition function obeys the following recursion formula:

N
Zﬁxx({lﬂ‘}’{uk})|lﬂ—v3‘=—icf2= —ie H(Vk —tﬁ - %ic)
oy

X H(V _l _'IC)ZXXX({‘!Q;&;G} {Vk;ég}) (65)
a#f
Lemma (b} remains unaltered.
It should also be noted that (6.3) can be obtained from (5.1) by making the
following substitutions

2n — ec {— el as € —0. (6.6)
This then leads to an extra factor of ™" in the partition function. This is casily

understood since the above substitutions would change each statistical weight in (2.4)
by a factor of e.
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7. Homogeneous lattice

The above results concentrated on the inhomogeneous lattice whereby with each ver-
tex corresponded a different set of statistical weights, see (3.1) and (3.4), parametrized
by {l,} and {v,}. In this section, we shall consider the special case of the homoge-
neous lattice where the statistical weight for each vertex is parametrized by the same
number. More explicitly, we shall consider

f, —1 v, — (a,k=1,...,N).

Each vertex will then be parametrized by the difference » =1 — v,
To derive the partition function for the homogeneous lattice, we will start with

the partition function (5.1) for the inhomogeneous lattice. To make the steps of the
proof more explicit, the partition function (5.1) is rewritten as

N N
IT 11 sinh(i, = v = in) sinh(l, ~ v +in)
Zn = (—isin 2n)N azlk=l

[[ sinhs~1) J[ sinh(ee -

1€a< AN 1<k <IN
¢(ly—vy) .. Bl —v) .o el —vy)
xdet| dlg—vy) oo Bllg—ve) -e. B(ly—vy) a.1)
SlUn—=17) o =) o Sy —vn)
where
(1 —v) = [sinh({ — v 4+ in)sinh(l - v —in)]"". (7.2)

In this form, it is evident that elements in the same row depend on the same value
of [; and elements in the same column depend on the same value of o).

First we will only be concerned with evaluating the limit

I, —! (a=1,...,N) (7.3)

and leave the set {1} arbitrary but each v, unique. The functions ¢({, — 1) can
then be Taylor expanded about ! when [, — {. The formula {5 = {4 ({5~ 1) will
prove useful where {5 — { is of infinitesimal order in the limit (7.3). It should be
noted that in the limit (7.3), singularities will arise in the denominator of (7.1) as will
be explained later.

For convenience, we set {; = {. First take the limit {, — { and use {, = I+ (!, -1)
to perform a Taylor series expansion. Thus elements in the second row of the matrix
in (7.1} are of the form

dl,—v))=(l-v;))+ (- l)qS'(l—-Vj)-l-

where the prime denotes differentiation with respect to the argument of ¢. The first
term can then be removed from the matrix by subtraction of the first row. Elementary
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row operations such as this do not change the value of the determinant. The second
row now has elements of the form

(=~ D'l -vi) + 3L = D*"(U-v) + -

where [, — [ can now be factored out of the determinant. In the denominator of
(7.1), the function sinh({, — {) induces a singularity in the limit {, — .. However,
this singularity is cancelled by the zero from the term (I, — ) factored out above.
The next order term disappears in the limit {, — [. Therefore the first two rows of
the matrix in (7.1) now read

Sl—1n) o Pl-1p) o PU-rp)
FlU—v) - F-vy) - FU-vw)| (1.4)

Next, the limit {; — { is taken. Thus the elements in the third row of (7.1) are
expanded as ’

Bty = vy) = o= vy) + (s = D8 -v) + LoDy b )
The first term in this expansion is removed by 5ubtractmg the first row from the third
row, The second term is removed by multiplving the second row by (i3 — {} and

subtracting. Thus, the third row is left with terms of the form

1, — 2
(32ll) ﬁbu(l-yj)‘l'

Factoring out (I, —1)2/2!, the zero in the denominator from sinh?(i;—!) is cancelled
in the limit {, — { leaving a factor of 1/2!. Thus, (7.1) takes the intermediate form

N N
o N [T I1sinh(i, — vy —in)sinh(l, — v +in)
(=isin 2n)" 421 k21

Zy =
N 2! I sinh(p—t) JI sinh(vi—w)
da AN 1IgkCIEN
ol=-vy) - Bll—v) - Bll-vy)
dl-v) 0 WU-v) - P(l-vy)
d'(l—-vy) 0 @' =v) o PL-vy)
xdetf ol —v,) - dlly~vy) - Hl—vp)
Sy —v1) - Sly~vp) o iy —vn)

(L =l,=0,=1). (7.6)

Using the procedure shown for , and {3, the arbitrary row 5 can be examined when
the previous 3 — 1 {s have been analysed in the limit (7.3). Elements in the Sth row

arn i
arc expanded n the form

([ﬂ_[)ﬂ—l

R

A

Bllp = v;) = $(L=v;) 4 (s — DU —v;) 4+
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when I; — 1. The first term is removed by subtraction with the first row of (7.6). The
second term is removed by multiplying the second row by ({; —~ /) and subtracting.
All the terms up to O(({; —{)#~2) are removed in a similar fashion using elementary
row operations, Thus the only terms left in the Gth row are of the form

Us = D" 5oy O((ly - )P 7.8
W‘ﬁ (I=v;)+0((lg - 1)). (7.8)
Again the term (13—1)#=1/(3—1)! is factored out. A term of the form sinh®~'({, -
[) appears in the denominator. This term is singular and of the same order as the
term factored out. In the limit [; — /, a factor of 1 /(3 —1)! remains. The additional
term in (7.8) of O((i5— 1P is still O(lz —!) and goes to zero giving no contribution
in the limit /5 — {.

This procedure is then carried out for each !, whereby the ath row aquires a—1
derivatives and a factor of 1 /{« — 1)!. The following form for the partition function
is thus obtained in the limit (7.3), alf {s are the same, but the set {u,} remains as
above

N
H sinhN(I—-uk —in)sinh™ (1 - vy +in)

Zy = (—isin2y)V 2 =
H a!l H sinh(vy - v;)
a=]1

IKh<IEN
(I —vy) e ol o l-wvy)
Pl-v) o PU-v) o (l-vy)

x det Qﬁ(ﬁ_])(l_yl) ¢(ﬁ-1)(.;_yk) ¢,{.8—1)('1_,,N)

GNDU—u) o NIy e gDy
(1.9)

This formula represents the partition function when the horizontal space is homoge-
neous but the vertical space is not.
Next the limit

v, — v (k=1,...,N) (7.10)

is considered. The formula v, = v — (v — v} is used to Taylor expand an arbitrary
element

Ol = vi) = ¢ = ) + (v = 1)U - v)
. . (V—V;_-_)k—l ALk =11s 1 N RN
+.”+W N Al=Vv)+ . (f.ll)

As above, the limits (7.10) are evaluvated in order of increasing k with ele-
mentary column operations used instead. The zeros in the denominator of the
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form sinh* " (v — v,) are removed by the factors (v — v )*~!/(k—1)! leav-
ing an overall factor of 1/(k — 1)! for the kth column. Thus the first col-
umn aquires no extra derivatives, the second column aquires one extra derivative
and the kth column aquires & — 1 additional derivatives. In addition, the factor
T, sinh™ (I — vy, — in) sinh™ (L — vy, + in) from (7.9) becomes ¢~V (<) where
z = | — v. Combining these results, the partition function in the homogeneous limit
is given by

—isin2n)N
Zn = ( N—l) 2
¢N(x) [H a!]
a=1
#(z) o k(@) . gND(z)
-y - dF) () ¢N)(z)
x det ¢(ﬂ-1)($) ¢(ﬁ+k'-2)(x) ¢(ﬁ+N'—2)(m)' (7.12)
SN-D(g) .o NHR=D(g) .. HEN-D(z)
This can then be written ifi & MOTC CORVERient way

Zy= e (7.13)
V() | I] *!
k=1
where the matrix H is given by
da+k—2
Hor = qu(m). (7'14)

where o and k are matrix indices. This is the result for the homogeneous lattice. It
should be noted that this procedure can be carried out for various other limits of the
spectral parameters. For example, all the vs could be the same with a subset of the
Is going to one value while the rest of the is go to another value. Using the above
method, many different situations can be analysed.

The partition function for the rational six-vertex mode! also has a homogeneous
limit that is similar to (7.13). The following result is proven using the methods above

ZXXX i (—iC)N det Hxxx
N ES

v 3 (7.15)
oN*(z) [H k!]
k=1
where
da+k—2
Hal™ = T 9(0) (7.16)

with the function 6(z) defined by

c?

B(z) = [mn + ?}_1_ (7.17)
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8. Conclusion

In this paper we showed that the partition function for the six-vertex model on a
finite square lattice can be explicitly evaluated in the case of domain wall boundary
conditions. The partition function was proved to be equal to the determinant of
some matrix. The size of this matrix is equal to the size of the lattice. In general,
the partition function of the six-vertex model was expressed in terms of trigonometric
functions. The determinant representation changed essentially for the homogencous
case. In the case of the rational six-vertex model, the matrix elements are rational
functions of the spectral parameters. Evaluation of the thermodynamic limit of the
inhomogeneous model is not straightforward and remains an open problem. How-
ever, we expect the free energy of the six-vertex model with domain wall boundary
conditions to differ from that with periodic boundary conditions since the model is
critical and surface effects should influence macroscopic quantities.

Acknowledgment

This work was supported by NSF grant PHY-9107261.

Appendix. Basics of QIsM

In this appendix, we briefly review the QIsM formulation of the X X Z Heisenberg
antiferromagnet, The six-vertex model has the same algebraic stucture as the inho-
mogeneous Heisenberg anti-ferromagnet, X X Z model. Therefore we will review the
important properties of QISM [14] in the context of the X X Z model.

The X X Z Hamiltonian is given by

M
H=—Z[cr:cr:+l+crﬁcrg+1+A(a;a;+1—-1)+2hafl] (AD)
n=1

where h is the external magnetic field and o} are standard Pauli matrices at the nth
site of the lattice. There are a total of M sites. A is the anisotropy parameter.
A =1 for the XXX model and A = cos2n for the XX Z model. We impose
periodic boundary conditions such that ¢; = o,,,,. This system has been solved
by means of both the coordinate and algebraic Bethe ansatz. The algebraic solution
comes from the QISM formulation of the model,

The transition matrix T(n,m|!) from site m to site n + 1 is the product of
L-operators

T(n,m[l) = L(OL, () - Li(D) - Ly 1 (D () (A2)

where | is the spectral parameter, rapidity. These L-operators obey the following
intertwining relation with the R-matrix (Al2)

R(Lp) Lo (D @ La(p)] = [La (1) @ L (D] R, ). (A3)
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Thus we see that the R-matrix acts in the tensor product space of the two L-operators.
This can be made more explicit by rewriting (A3) as

ﬁaﬁ“’ ”)Lan(l)l'ﬁn(#) - L,@n(u)l-an([)ﬁqﬁ(l! ﬂ') (A4)

where subindices enumerate the spaces where the matrices act non-trivially. The

matrix R is defined by R = PR where P is the permutation matrix which interchanges
two spaces and is given explicitly by

P=

0
0
X (AS)
0

-0 o o

0
1
0
0

o O -

Here L, is a 2 x 2 matrix which acts in the two-dimensional space o and L, acts
in the space G, n is still the lattice site. The transition matrix also obeys a similar
relationship with the R-matrix.

The transition matrix through the entire lattice is called the monodromy matrix
T(1)

o=(4 ) w

T(l) )

where A,B, C and D are operators which act on a pseudovacuum, |0}, in the
following way:

ADOY = a(Dj0)  CDjo)=0
(A7)
Do) = d())jo)  (0|B(}) =o.

The pseudovacuum for the above Hamiltonian (Al), |0), is the state with all spins
up, | 1). The vacuum eigenvalues a(l) and d({) are c-valued functions of the spectral
parameter. Their explicit form depends on the model in question. The X X X model
has vacuum eigenvalues

a(l) = (1 - Lic)™ d(l) = (1 + sig)™ (A8)

and the X X Z model has vacuum eigenvalues
a(l) = sinh™ (1 —in) d(l) = sinh™({ +in). (A9)

Here c and n are coupling constants. B(l) and C(!) can be considered as cre-
ation and annihilation operators on the vacuum. Hence, the eigenfunction of the
Hamiltonian (A1) for N spins down (N < M) is of the form

N
{1 = [T BU;)lo). (A10)
=i
The monodromy matrix (AS5) obeys the following intertwining relation

Rop (L )T (DT () = To(m) To(DRg(h 1) (All)
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where T (1) acts on the two-dimensional space « and T4{u) acts on the space S.
From (A10) it follows that ([B({}, B(p)] =0 and [C(l),C{u)] = 0). The race of
T(1) is the transfer matrix r(!) which is the generator of all conservation laws. From
(A10) we see that the transfer matrices commute for different values of the spectral
parameter, [7(I), 7(u)] = 0.

The R-matrix for the above Hamiltonian is of the following form

/f(!‘,t) 0 0 0
_ 0 g, 1) 1 0
R(L, ) = t L - J (A12)
0 0 0 flu, )
where for the X X X model
ie ie
flu,)=1+ =, g(p,l) = e (A13)

and for the X X Z model

sinh(p — { + 2in) isin(2n)

flu, ) = Snb (= D) glp,l) = ShGi=D) (Al4)

where ¢ and 7 are coupling constants, ¢ > 0 and A = cos2n.
The above intertwining relation for the L-operator has a solution whose result for
the XX X model is
n

L()=1- g ( s 2o ) (Al5)

n n
207 -0}

while the result for the X X Z mode] is
(sinh(f —ine?) —o’sin(2n) )

L, ()=
® —olsin(2n) sinh(l{4ino})

(A16)

These solutions can be generalized to the inhomogeneous case whereby the spec-
tral parameter is shifted by a number 1, which depends on the site of the lattice.

The monodromy matrix then takes the following form

A EiW AaAvsRENSABLAsALEY  aia ahsEaan

T =Ly (I—vpy) - Li{(I—vy) (A1)

and still satisfies the intertwining relation {A10) above. In this case, the vacuum
eigenvalues (A7) for the inhomogeneous X X X model become

M M
a(l) = J[[(1-v; - }ie) d(1) = [JU - v + Lic) (A18)

i=1 i=1

and the vacuum ecigenvalues (A8) for the inhomogeneous X X Z model become

M
a(l) = [] sinh(l - v; ~in)
j=i

(A19)
M
d(l) = [[ sinh(l - v; +in).

F=1
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The inhomogeneous form of (A15) was used in the construction of the partition
function of the six-vertex model.
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